Daeppen, Jérôme (24 January 2014). Genetic Engineering of Induced Pluripotent Stem Cells and Reprogramming to Motor Neurons to Elucidate Selective Motor Neuron Death in Amyotrophic Lateral Sclerosis (Unpublished). In: Swiss RNA Workshop 2014. Bern, Schweiz. 24.01.2014.
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease, fatal within 1 to 5 years after onset of symptoms. About 3 out of 100’000 persons are diagnosed with ALS and there is still no cure available [1, 2]. 95% of all cases occur sporadically and the aetiology remains largely unknown [XXXX]. However, up to now 16 genes were identified to play a role in the development of familial ALS. One of these genes is FUS that encodes for the protein fused in sarcoma/translocated in liposarcoma (FUS/TLS). Mutations in this gene are responsible for some cases of sporadic as well as of inherited ALS [3].
FUS belongs to the family of heterogeneous nuclear ribonucleoproteins and is predicted to be involved in several cellular functions like transcription regulation [4], RNA splicing [5, 6], mRNA transport in neurons [7] and microRNA processing [8]. Aberrant accumulation of mutated FUS has been found in the cytoplasm of motor neurons from ALS patients [9]. The mislocalization of FUS is based on a mutation in the nuclear localization signal of FUS [10]. However, it is still unclear if the cytoplasmic localization of FUS leads to a toxic gain of cytoplasmic function and/or a loss of nuclear function that might be crucial in the course of ALS.
The goal of this project is to characterize the impact of ALS-associated FUS mutations on in vitro differentiated motor neurons. To this end, we edit the genome of induced pluripotent stem cells (iPSC) using transcription activator-like effector nucleases (TALENs) [11,12] to create three isogenic cell lines, each carrying an ALS-associated FUS mutation (G156E, R244C and P525L). These iPSC’s will then be differentiated to motor neurons according to a recently establishe protocol (Ref Wichterle) and serve to study alterations in the transcriptome, proteome and metabolome upon the expression of ALS-associated FUS.
With this approach, we hope to unravel the molecular mechanism leading to FUS-associated ALS and to provide new insight into the emerging connection between misregulation of RNA metabolism and neurodegeneration, a connection that is currently implied in a variety of additional neurological diseases, including spinocerebellar ataxia 2 (SCA-2), spinal muscular atrophy (SMA), fragile X syndrome, and myotonic dystrophy.
Item Type: |
Conference or Workshop Item (Poster) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP) |
UniBE Contributor: |
Daeppen, Jérôme |
Subjects: |
500 Science > 570 Life sciences; biology 500 Science > 540 Chemistry |
Language: |
English |
Submitter: |
Christina Schüpbach |
Date Deposited: |
23 Dec 2014 14:36 |
Last Modified: |
05 Dec 2022 14:38 |
URI: |
https://boris.unibe.ch/id/eprint/61330 |