Synaptic regulation of spike firing in interneurons of the striatum in vivo

Schulz, Jan M; Reynolds, John N (2011). Synaptic regulation of spike firing in interneurons of the striatum in vivo. In: BC11 : Computational Neuroscience & Neurotechnology Bernstein Conference & Neurex Annual Meeting 2011 5. Frontiers 10.3389/conf.fncom.2011.53.00176

The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.

Item Type:

Conference or Workshop Item (Poster)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > Institute of Physiology

UniBE Contributor:

Schulz, Jan

Subjects:

600 Technology > 610 Medicine & health

Publisher:

Frontiers

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:21

Last Modified:

05 Dec 2022 14:06

Publisher DOI:

10.3389/conf.fncom.2011.53.00176

URI:

https://boris.unibe.ch/id/eprint/6983 (FactScience: 212117)

Actions (login required)

Edit item Edit item
Provide Feedback