Valle d’Aosta section of the Sesia Zone: multi-stage HP metamorphism and assembly of a rifted continental margin

Compagnoni, Roberto; Engi, Martin; Regis, Daniele (2014). Valle d’Aosta section of the Sesia Zone: multi-stage HP metamorphism and assembly of a rifted continental margin. Geologial Field Trips, 6(1.2), pp. 1-44. Istituto Superiore per la Protezione e la Ricerca Ambientale 10.3301/GFT.2014.02

[img] Text
2014-CompagnoniEngiRegis-AostaGuide-ISPRA.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (5MB)

The spectrum characteristic of the EMC ranges from eclogites (containing omphacite and/or jadeite, garnet, phengite, glaucophane, zoisite, chloritoid, rutile) to phengite schists, calcschists, and marbles, as well as a variety of orthogneisses. Despite the intense polyphase deformation and HP-metamorphic recrystallization, it is possible in some locations to recognize pre-Alpine characteristics in some of the protoliths. For instance, two types of felsic orthogneiss can be distinguished in the Aosta Valley, one derived from Permian granitoids (with local preservation of intrusive contacts, magmatic inclusions, leucocratic veins and other magmatic structures; Stop 3), the other derived from pre-Variscan leuco-monzogranite, such as the building stone mined at the “Argentera” quarry near Settimo Vittone / Montestrutto (Stop 2; so-called “Verde Argento” contains jadeite, phengite, K-feldspar, quartz).
Polycyclic and more rarely monocyclic metasediments contain evidence of a complex Alpine PTDt-evolution, locally including relics of their prograde history from blueschist, one or more stages at eclogite facies. Recent petrochronological studies have dated this HP-evolution of the Sesia Zone in some detail. In the area visited, clear evidence of HP-cycling has been identified in one km-size tectonic slice (Stop 1), but not in adjacent parts of the EMC, indicating “yo-yo tectonics”. Partial retrogression and attendant ductile to brittle deformation of the HP-rocks is evident in one of the outcrops (Stop 4).
Apart from the four localities in the Sesia Zone, a final outcrop introduces HP-rocks of the adjacent Piemonte oceanic unit, specifically calc-schists and ophiolite members of the “Zermatt-Saas” zone. The hilltop outcrop (Stop 5) displays foliated antigorite schist with peridotite relics (clinopyroxene, spinel) containing lenses derived from doleritic dykes. These fine-grained metarodingites and the folded veins containing Mg-chlorite and titanoclinohumite within serpentinite once again indicate equilibration under low-temperature eclogite facies conditions. However, these units reached that HP stage more than 20 Ma after the youngest eclogite facies imprint recognized in the Sesia Zone.
Despite nearly half a century of intense study in the Sesia Zone, the complex assembly of its HP-terranes and their relation to more external parts of the Western Alps remains incompletely understood. This field guide merely introduces a few of the classic outcrops and discusses some of the critical evidence they contain, but it could not incorporate details on each stage of the evolution recognized so far.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Geological Sciences

UniBE Contributor:

Engi, Martin, Regis, Daniele

Subjects:

500 Science > 550 Earth sciences & geology

ISSN:

2038-4947

Publisher:

Istituto Superiore per la Protezione e la Ricerca Ambientale

Language:

English

Submitter:

Martin Engi

Date Deposited:

11 Aug 2015 14:23

Last Modified:

05 Dec 2022 14:48

Publisher DOI:

10.3301/GFT.2014.02

Uncontrolled Keywords:

Geological Field Trip Guide

BORIS DOI:

10.48350/70830

URI:

https://boris.unibe.ch/id/eprint/70830

Actions (login required)

Edit item Edit item
Provide Feedback