Life stage differences in mammary gland gene expression profile in non-human primates

Stute, Petra; Sielker, Sonja; Wood, Charles E; Register, Thomas C; Lees, Cynthia J; Dewi, Fitriya N; Williams, J Koudy; Wagner, Janice D; Stefenelli, Ulrich; Cline, J Mark (2012). Life stage differences in mammary gland gene expression profile in non-human primates. Breast cancer research and treatment, 133(2), pp. 617-34. Dordrecht: Springer 10.1007/s10549-011-1811-9

[img]
Preview
Text
10549_2011_Article_1811.pdf - Published Version
Available under License Publisher holds Copyright.

Download (680kB) | Preview

Breast cancer (BC) is the most common malignancy of women in the developed world. To better understand its pathogenesis, knowledge of normal breast development is crucial, as BC is the result of disregulation of physiologic processes. The aim of this study was to investigate the impact of reproductive life stages on the transcriptional profile of the mammary gland in a primate model. Comparative transcriptomic analyses were carried out using breast tissues from 28 female cynomolgus macaques (Macaca fascicularis) at the following life stages: prepubertal (n = 5), adolescent (n = 4), adult luteal (n = 5), pregnant (n = 6), lactating (n = 3), and postmenopausal (n = 5). Mammary gland RNA was hybridized to Affymetrix GeneChip(®) Rhesus Macaque Genome Arrays. Differential gene expression was analyzed using ANOVA and cluster analysis. Hierarchical cluster analysis revealed distinct separation of life stage groups. More than 2,225 differentially expressed mRNAs were identified. Gene families or pathways that changed across life stages included those related to estrogen and androgen (ESR1, PGR, TFF1, GREB1, AR, 17HSDB2, 17HSDB7, STS, HSD11B1, AKR1C4), prolactin (PRLR, ELF5, STAT5, CSN1S1), insulin-like growth factor signaling (IGF1, IGFBP1, IGFBP5), extracellular matrix (POSTN, TGFB1, COL5A2, COL12A1, FOXC1, LAMC1, PDGFRA, TGFB2), and differentiation (CD24, CD29, CD44, CD61, ALDH1, BRCA1, FOXA1, POSTN, DICER1, LIG4, KLF4, NOTCH2, RIF1, BMPR1A, TGFB2). Pregnancy and lactation displayed distinct patterns of gene expression. ESR1 and IGF1 were significantly higher in the adolescent compared to the adult animals, whereas differentiation pathways were overrepresented in adult animals and pregnancy-associated life stages. Few individual genes were distinctly different in postmenopausal animals. Our data demonstrate characteristic patterns of gene expression during breast development. Several of the pathways activated during pubertal development have been implicated in cancer development and metastasis, supporting the idea that other developmental markers may have application as biomarkers for BC.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Gynaecology

UniBE Contributor:

Stute, Petra

ISSN:

0167-6806

Publisher:

Springer

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:21

Last Modified:

09 May 2023 16:17

Publisher DOI:

10.1007/s10549-011-1811-9

PubMed ID:

22037779

Web of Science ID:

000304610600021

BORIS DOI:

10.7892/boris.7164

URI:

https://boris.unibe.ch/id/eprint/7164 (FactScience: 212341)

Actions (login required)

Edit item Edit item
Provide Feedback