On the radius of habitable planets

Alibert, Yann (2014). On the radius of habitable planets. Astronomy and astrophysics, 561(A41), A41. EDP Sciences 10.1051/0004-6361/201322293

[img] Text
aa22293-13.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (444kB)

Context. The conditions that a planet must fulfill to be habitable are not precisely known. However, it is comparatively easier to define conditions under which a planet is very likely not habitable. Finding such conditions is important as it can help select, in an ensemble of potentially observable planets, which ones should be observed in greater detail for characterization studies.
Aims: Assuming, as in the Earth, that the presence of a C-cycle is a necessary condition for long-term habitability, we derive, as a function of the planetary mass, a radius above which a planet is likely not habitable. We compute the maximum radius a planet can have to fulfill two constraints: surface conditions compatible with the existence of liquid water, and no ice layer at the bottom of a putative global ocean. We demonstrate that, above a given radius, these two constraints cannot be met.
Methods: We compute internal structure models of planets, using a five-layer model (core, inner mantle, outer mantle, ocean, and atmosphere), for different masses and composition of the planets (in particular, the Fe/Si ratio of the planet).
Results: Our results show that for planets in the super-Earth mass range (1-12 M⊕), the maximum that a planet, with a composition similar to that of the Earth, can have varies between 1.7 and 2.2 R⊕. This radius is reduced when considering planets with higher Fe/Si ratios and taking radiation into account when computing the gas envelope structure.
Conclusions: These results can be used to infer, from radius and mass determinations using high-precision transit observations like those that will soon be performed by the CHaracterizing ExOPlanet Satellite (CHEOPS), which planets are very likely not habitable, and therefore which ones should be considered as best targets for further habitability studies.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences > Theoretical Astrophysics and Planetary Science (TAPS)
08 Faculty of Science > Physics Institute > NCCR PlanetS

UniBE Contributor:

Alibert, Yann Daniel Pierre

Subjects:

500 Science > 520 Astronomy
600 Technology > 620 Engineering
500 Science > 530 Physics

ISSN:

0004-6361

Publisher:

EDP Sciences

Language:

English

Submitter:

Yann Alibert

Date Deposited:

13 Sep 2016 08:54

Last Modified:

05 Dec 2022 14:58

Publisher DOI:

10.1051/0004-6361/201322293

Uncontrolled Keywords:

planets and satellites: general, planets and satellites: composition

BORIS DOI:

10.7892/boris.87761

URI:

https://boris.unibe.ch/id/eprint/87761

Actions (login required)

Edit item Edit item
Provide Feedback