Biotic turnover rates during the Pleistocene-Holocene transition

Stivrins, Normunds; Soininen, Janne; Amon, Leeli; Fontana, Sonia L.; Gryguc, Gražyna; Heikkilä, Maija; Heiri, Oliver; Kisielienė, Dalia; Reitalu, Triin; Stančikaitė, Miglė; Veski, Siim; Seppä, Heikki (2016). Biotic turnover rates during the Pleistocene-Holocene transition. Quaternary Science Reviews, 151, pp. 100-110. Elsevier 10.1016/j.quascirev.2016.09.008

[img] Text
2016_QuatSciRev_151_100.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

The Northern Hemisphere is currently warming at the rate which is unprecedented during the Holocene. Quantitative palaeoclimatic records show that the most recent time in the geological history with comparable warming rates was during the Pleistocene-Holocene transition (PHT) about 14,000 to 11,000 years ago. To better understand the biotic response to rapid temperature change, we explore the community turnover rates during the PHT by focusing on the Baltic region in the southeastern sector of the Scandinavian Ice Sheet, where an exceptionally dense network on microfossil and macrofossil data that reflect the biotic community history are available. We further use a composite chironomid-based summer temperature reconstruction compiled specifically for our study region to calculate the rate of temperature change during the PHT. The fastest biotic turnover in the terrestrial and aquatic communities occurred during the Younger Dryas-Holocene shift at 11,700 years ago. This general shift in species composition was accompanied by regional extinctions, including disappearance of mammoth (Mammuthus primigenius) and reindeer (Rangifer tarandus) and many arctic-alpine plant taxa, such as Dryas octopetala, Salix polaris and Saxifraga aizoides, from the region. This rapid biotic turnover rate occurred when the rate of warming was 0.17 °C/decade, thus slightly lower than the current Northern Hemisphere warming of 0.2 °C/decade. We therefore conclude that the Younger Dryas-Holocene shift with its rapid turnover rates and associated regional extinctions represents an important palaeoanalogue to the current high latitude warming and gives insights about the probable future turnover rates and patterns of the terrestrial and aquatic ecosystem change.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Palaeoecology

UniBE Contributor:

Heiri, Oliver

Subjects:

500 Science > 580 Plants (Botany)

ISSN:

0277-3791

Publisher:

Elsevier

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

21 Dec 2016 08:30

Last Modified:

05 Dec 2022 14:59

Publisher DOI:

10.1016/j.quascirev.2016.09.008

Uncontrolled Keywords:

Temperature change, Biotic turnover rates, Regional extinctions, Pollen, Plant macrofossils, Phytoplankton

BORIS DOI:

10.7892/boris.90413

URI:

https://boris.unibe.ch/id/eprint/90413

Actions (login required)

Edit item Edit item
Provide Feedback