Intermolecular dissociation energies of dispersively bound 1-naphthol⋅cycloalkane complexes

Maity, Surajit; Ottiger, Philipp; Balmer, Franziska; Knochenmuss, Richard Donald; Leutwyler, Samuel (2016). Intermolecular dissociation energies of dispersively bound 1-naphthol⋅cycloalkane complexes. The Journal of Chemical Physics, 145(24), p. 244314. American Institute of Physics 10.1063/1.4973013

[img] Text
1NpOH-cycloalkanes.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (3MB)
[img]
Preview
Text
1NpOH-Cycloalkane_JCP2016.pdf - Accepted Version
Available under License Publisher holds Copyright.

Download (2MB) | Preview

Intermolecular dissociation energies D0(S0) of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with cyclopentane, cyclohexane, and cycloheptane were determined to within <0.5% using the stimulated-emission pumping resonant two-photon ionization method. The ground state D0(S0) values are bracketed as 20.23±0.07 kJ/mol for 1NpOH⋅cyclopentane, 20.34±0.04 kJ/mol for 1NpOH⋅cyclohexane, and 22.07±0.10 kJ/mol for two isomers of 1NpOH⋅cycloheptane. Upon S0→S1 excitation of the 1-naphthol chromophore, the dissociation energies of the 1NpOH⋅cycloalkane complexes increase from 0.1% to 3%. Three dispersion-corrected density functional theory (DFT) methods predict that the cycloalkane moieties are dispersively bound to the naphthol face via London-type interactions, similar to the “face” isomer of the 1-naphthol⋅cyclopropane complex [S. Maity et al., J. Chem. Phys. 145, 164304 (2016)]. The experimental and calculated D0(S0) values of the cyclohexane and cyclopentane complexes are practically identical, although the polarizability of cyclohexane is ∼20% larger than that of cyclopentane. Investigation of the calculated pairwise atomic contributions to the D2 dispersion energy reveals that this is due to subtle details of the binding geometries of the cycloalkanes relative to the 1-naphthol ring. The B97-D3 DFT method predicts dissociation energies within about ±1
% of experiment, including the cyclopropane face complex. The B3LYP-D3 and ωB97X-D calculated dissociation energies are 7–9 and 13–20% higher than the experimental D0(S0) values. Without dispersion correction, all the complexes are calculated to be unbound.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP)

UniBE Contributor:

Maity, Surajit, Ottiger, Philipp, Balmer, Franziska, Knochenmuss, Richard Donald, Leutwyler, Samuel

Subjects:

500 Science > 570 Life sciences; biology
500 Science > 540 Chemistry
500 Science

ISSN:

0021-9606

Publisher:

American Institute of Physics

Language:

English

Submitter:

Beatrice Niederhauser

Date Deposited:

24 Jan 2017 10:28

Last Modified:

05 Dec 2022 15:01

Publisher DOI:

10.1063/1.4973013

PubMed ID:

28049305

BORIS DOI:

10.7892/boris.92456

URI:

https://boris.unibe.ch/id/eprint/92456

Actions (login required)

Edit item Edit item
Provide Feedback