Opposing intraspecific vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages

Hahn, Christoph Z.; Niklaus, Pascal A.; Bruelheide, Helge; Michalski, Stefan G.; Shi, Miaomiao; Yang, Xuefei; Zeng, Xueqin; Fischer, Markus; Durka, Walter (2017). Opposing intraspecific vs. interspecific diversity effects on herbivory and growth in subtropical experimental tree assemblages. Journal of Plant Ecology, 10(1), pp. 242-251. Oxford University Press 10.1093/jpe/rtw098

[img] Text
2017_JPlantEcol_10_242.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

Aims
Positive plant diversity–ecosystem function relations are ultimately driven by variation in functional traits among individuals that form a community. To date, research has largely focused on the role of species diversity for ecosystem functioning. However, substantial intraspecific trait variation is common and a significant part of this variation caused by genetic differences among individuals. Here, we studied the relative importance of species diversity and seed family (SF) diversity within species for growth and herbivory in experimental subtropical tree assemblages.
Methods
In 2010, we set up a field experiment in subtropical China, using four species from the local species pool. Trees were raised from seeds, with seeds from the same mother tree forming an SF. We established 23 plots containing one or four species (species diversity treatment) and one or four SFs per species (SF diversity treatment). Tree growth (stem diameter, plant height and crown expansion) and herbivory (percentage leaf loss due to leaf chewers) were monitored annually from 2011 to 2013.
Important findings
Tree species richness promoted growth but had no effect on herbivory. In contrast, SF diversity reduced growth and increased herbivory but only so in species mixtures. Most of the observed effects were time dependent, with the largest effect found in 2013. Our results suggest that biodiversity can affect plant performance directly via tree species–species interactions, or context dependent, via potential effects on inter-trophic interactions. Two important conclusions should be drawn from our findings. Firstly, in future studies regarding biodiversity and ecosystem functioning (BEF) relationships, intraspecific genetic diversity should be given similar weight as species diversity as it has often been neglected and its effects are not well understood. Secondly, we demonstrate opposite effects of biodiversity among and within species, stressing the importance to consider the effects of multiple levels of biodiversity simultaneously.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Plant Ecology
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)

UniBE Contributor:

Fischer, Markus

Subjects:

500 Science > 580 Plants (Botany)

ISSN:

1752-9921

Publisher:

Oxford University Press

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

06 Mar 2017 16:07

Last Modified:

05 Dec 2022 15:03

Publisher DOI:

10.1093/jpe/rtw098

Uncontrolled Keywords:

BEF-China, species diversity, genetic diversity, growth, herbivory

BORIS DOI:

10.7892/boris.95776

URI:

https://boris.unibe.ch/id/eprint/95776

Actions (login required)

Edit item Edit item
Provide Feedback