Design and implementation of an electromagnetic ultrasound-based navigation technique for laparoscopic ablation of liver tumors

Paolucci, Iwan; Schwalbe, Marius; Prevost, Gian Andrea; Lachenmayer, Anja; Candinas, Daniel; Weber, Stefan; Tinguely, Pascale Marie Pia (2018). Design and implementation of an electromagnetic ultrasound-based navigation technique for laparoscopic ablation of liver tumors. Surgical endoscopy, 32(7), pp. 3410-3419. Springer 10.1007/s00464-018-6088-1

[img] Text
Paolucci et al. - 2018 - Design and implementation of an electromagnetic ultrasound-based navigation technique for laparoscopic ablation.pdf - Published Version
Restricted to registered users only until 13 February 2022.
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

BACKGROUND Efficient laparoscopic ablation of liver tumors relies on precise tumor visualization and accurate positioning of ablation probes. This study evaluates positional accuracy and procedural efficiency of a dynamic navigation technique based on electromagnetic-tracked laparoscopic ultrasound (ELUS) for laparoscopic ablation of liver tumors. METHODS The proposed navigation approach combines intraoperative 2D ELUS-based planning for navigated positioning of ablation probes, with immediate 3D ELUS-based validation of intrahepatic probe position. The environmental influence on electromagnetic-tracking stability was evaluated in the operation room. Accuracy of navigated ablation probe positioning assessed as the target-positioning error (TPE), and procedural efficiency defined as time efforts for target definition/navigated targeting and number of probe repositionings, were evaluated in a laparoscopic model and compared with conventional laparoscopic ultrasound (LUS) guidance. RESULTS The operation-room environment showed interferences < 1 mm on the EM-tracking system. A total of 60 targeting attempts were conducted by three surgeons, with ten targeting attempts using ELUS and ten using conventional LUS each. Median TPE and time for targeting using ELUS and LUS were 4.2 mm (IQR 2.9-5.3 mm) versus 6 mm (IQR 4.7-7.5 mm), and 39 s (IQR 24-47 s) versus 76 s (IQR 47-121 s), respectively (p < 0.01 each). With ELUS, median time for target definition was 48.5 s, with 0 ablation probe repositionings compared to 17 when using LUS. The navigation technique was rated with a mean score of 85.5 on a Standard Usability Scale. CONCLUSIONS The proposed ELUS-based navigation approach allows for accurate and efficient targeting of liver tumors in a laparoscopic model. Focusing on a dynamic and tumor-targeted navigation technique relying on intraoperative imaging, this avoids potential inaccuracies due to organ deformation and yields a user-friendly technique for efficient laparoscopic ablation of liver tumors.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Viszeralchirurgie
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Viszeralchirurgie

04 Faculty of Medicine > Department of Gastro-intestinal, Liver and Lung Disorders (DMLL) > Clinic of Visceral Surgery and Medicine
04 Faculty of Medicine > Department of Gastro-intestinal, Liver and Lung Disorders (DMLL) > Clinic of Visceral Surgery and Medicine > Visceral Surgery
10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research > ARTORG Center - Image Guided Therapy

Graduate School:

Graduate School for Cellular and Biomedical Sciences (GCB)

UniBE Contributor:

Paolucci, Iwan; Schwalbe, Marius; Prevost, Gian Andrea; Lachenmayer, Anja; Candinas, Daniel; Weber, Stefan and Tinguely, Pascale Marie Pia

Subjects:

600 Technology > 610 Medicine & health

ISSN:

0930-2794

Publisher:

Springer

Language:

English

Submitter:

Iwan Paolucci

Date Deposited:

16 Apr 2018 15:56

Last Modified:

07 Feb 2019 05:22

Publisher DOI:

10.1007/s00464-018-6088-1

PubMed ID:

29435744

Uncontrolled Keywords:

Ablation techniques, Computer-assisted surgery, Laparoscopy, Liver neoplasms, Three-dimensional imaging, Ultrasonography

BORIS DOI:

10.7892/boris.111665

URI:

https://boris.unibe.ch/id/eprint/111665

Actions (login required)

Edit item Edit item
Provide Feedback