Safety, Biodistribution, and Radiation Dosimetry of Ga-OPS202 in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase I Imaging Study.

Nicolas, Guillaume P; Beykan, Seval; Bouterfa, Hakim; Kaufmann, Jens; Bauman, Andreas; Lassmann, Michael; Reubi, Jean Claude; Rivier, Jean E F; Maecke, Helmut R; Fani, Melpomeni; Wild, Damian (2018). Safety, Biodistribution, and Radiation Dosimetry of Ga-OPS202 in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase I Imaging Study. Journal of nuclear medicine, 59(6), pp. 909-914. Society of Nuclear Medicine 10.2967/jnumed.117.199737

[img] Text
J Nucl Med-2018-Nicolas-909-14.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB) | Request a copy

Preclinical and preliminary clinical evidence indicates that radiolabeled somatostatin (sst) receptor antagonists perform better than agonists in detecting neuroendocrine tumors (NETs). We performed a prospective phase I/II study to evaluate the sst receptor antagonist Ga-OPS202 (Ga-NODAGA-JR11; NODAGA = 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid and JR11 = Cpa-c(dCys-Aph(Hor)-dAph(Cbm)-Lys-Thr-Cys)-dTyr-NH)) for PET imaging. Here, we report the results of phase I of the study. Patients received 2 single 150-MBq intravenous injections of Ga-OPS202 3-4 wk apart (15 μg of peptide at visit 1 and 50 μg at visit 2). At visit 1, a dynamic PET/CT scan over the kidney was obtained during the first 30 min after injection, and static whole-body scans were obtained at 0.5, 1, 2, and 4 h after injection; at visit 2, a static whole-body scan was obtained at 1 h. Blood samples and urine were collected at regular intervals to determine Ga-OPS202 pharmacokinetics. Safety, biodistribution, radiation dosimetry, and the most appropriate imaging time point for Ga-OPS202 were assessed. Twelve patients with well-differentiated gastroenteropancreatic (GEP) NETs took part in the study. Ga-OPS202 cleared rapidly from the blood, with a mean residence time of 2.4 ± 1.1 min/L. The organs with the highest mean dose coefficients were the urinary bladder wall, kidneys, and spleen. The calculated effective dose was 2.4E-02 ± 0.2E-02 mSv/MBq, corresponding to 3.6 mSv, for a reference activity of 150 MBq. Based on total numbers of detected malignant lesions, the optimal time window for the scan was between 1 and 2 h. For malignant liver lesions, the time point at which most patients had the highest mean tumor contrast was 1 h. Ga-OPS202 was well tolerated; adverse events were grade 1 or 2, and there were no signals of concern from laboratory blood or urinalysis tests. Ga-OPS202 showed favorable biodistribution and imaging properties, with optimal tumor contrast between 1 and 2 h after injection. Dosimetry analysis revealed that the dose delivered by Ga-OPS202 to organs is similar to that delivered by other Ga-labeled sst analogs. Further evaluation of Ga-OPS202 for PET/CT imaging of NETs is therefore warranted.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute of Pathology

UniBE Contributor:

Reubi-Kattenbusch, Jean-Claude

Subjects:

500 Science > 570 Life sciences; biology
600 Technology > 610 Medicine & health

ISSN:

0161-5505

Publisher:

Society of Nuclear Medicine

Language:

English

Submitter:

Christa Hagert

Date Deposited:

30 Jan 2019 08:27

Last Modified:

24 Oct 2019 07:25

Publisher DOI:

10.2967/jnumed.117.199737

PubMed ID:

29025985

Uncontrolled Keywords:

68Ga-NODAGA-JR11 68Ga-OPS202 dosimetry neuroendocrine tumors somatostatin receptor antagonist

BORIS DOI:

10.7892/boris.122022

URI:

https://boris.unibe.ch/id/eprint/122022

Actions (login required)

Edit item Edit item
Provide Feedback