Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe.

Hauser, Anthony; Counotte, Michel J.; Margossian, Charles C; Konstantinoudis, Garyfallos; Low, Nicola; Althaus, Christian L.; Riou, Julien (2020). Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe. PLoS medicine, 17(7), e1003189. Public Library of Science 10.1371/journal.pmed.1003189

Hauser PLoSMed 2020.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview


As of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential for understanding clinical prognosis, planning healthcare capacity, and epidemic forecasting. The case-fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths, is the most commonly reported metric, but it can be a misleading measure of overall mortality. The objectives of this study were to (1) simulate the transmission dynamics of SARS-CoV-2 using publicly available surveillance data and (2) infer estimates of SARS-CoV-2 mortality adjusted for biases and examine the CFR, the symptomatic case-fatality ratio (sCFR), and the infection-fatality ratio (IFR) in different geographic locations.


We developed an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental model describing the dynamics of transmission and mortality during the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment of severe cases and right-censoring of mortality. We fitted the transmission model to surveillance data from Hubei Province, China, and applied the same model to six regions in Europe: Austria, Bavaria (Germany), Baden-Württemberg (Germany), Lombardy (Italy), Spain, and Switzerland. In Hubei, the baseline estimates were as follows: CFR 2.4% (95% credible interval [CrI] 2.1%-2.8%), sCFR 3.7% (3.2%-4.2%), and IFR 2.9% (2.4%-3.5%). Estimated measures of mortality changed over time. Across the six locations in Europe, estimates of CFR varied widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4%-0.6%) in Switzerland to 1.4% (1.1%-1.6%) in Lombardy, Italy. In all locations, mortality increased with age. Among individuals 80 years or older, estimates of the IFR suggest that the proportion of all those infected with SARS-CoV-2 who will die ranges from 20% (95% CrI 16%-26%) in Switzerland to 34% (95% CrI 28%-40%) in Spain. A limitation of the model is that count data by date of onset are required, and these are not available in all countries.


We propose a comprehensive solution to the estimation of SARS-Cov-2 mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison across settings. Geographic differences in IFR suggest that a single IFR should not be applied to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases, are measures that can be used to improve and monitor clinical and public health strategies to reduce the deaths from SARS-CoV-2 infection.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Pre-clinic Human Medicine > Institute of Social and Preventive Medicine (ISPM)

UniBE Contributor:

Hauser, Anthony Willy, Counotte, Michel Jacques, Low, Nicola, Althaus, Christian, Riou, Julien Yannis


600 Technology > 610 Medicine & health
300 Social sciences, sociology & anthropology > 360 Social problems & social services




Public Library of Science


[4] Swiss National Science Foundation




Andrea Flükiger-Flückiger

Date Deposited:

11 Aug 2020 18:37

Last Modified:

20 Jun 2024 18:53

Publisher DOI:


PubMed ID:





Actions (login required)

Edit item Edit item
Provide Feedback