Ruffoni, Lorenzo; Tripaldi, Francesca (2020). Extending an example by Colding and Minicozzi. Journal of geometric analysis, 30(1), pp. 1028-1041. Springer-Verlag 10.1007/s12220-019-00177-4
|
Text
Ruffoni-Tripaldi2020_Article_ExtendingAnExampleByColdingAnd.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (705kB) | Preview |
|
|
Text
1810.00359.pdf - Submitted Version Available under License Publisher holds Copyright. Download (569kB) | Preview |
Extending an example by Colding and Minicozzi (Trans Am Math Soc 356(1):283–289, 2003), we construct a sequence of properly embedded minimal disks \Sigma_i in an infinite Euclidean cylinder around the x_3-axis with curvature blow-up at a single point. The sequence converges to a non-smooth and non-proper minimal lamination in the cylinder. Moreover, we show that the
disks \Sigma_i are not properly embedded in a sequence of open subsets of R^3 that exhausts R^3.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics |
UniBE Contributor: |
Tripaldi, Francesca |
Subjects: |
500 Science > 510 Mathematics |
ISSN: |
1050-6926 |
Publisher: |
Springer-Verlag |
Funders: |
[UNSPECIFIED] Academy of Finland ; [UNSPECIFIED] University of Jyväskylä ; [18] European Research Council ; [UNSPECIFIED] Marie Skłodowska-Curie Grant |
Language: |
English |
Submitter: |
Sebastiano Don |
Date Deposited: |
27 Jan 2021 17:08 |
Last Modified: |
05 Dec 2022 15:45 |
Publisher DOI: |
10.1007/s12220-019-00177-4 |
ArXiv ID: |
1810.00359 |
Uncontrolled Keywords: |
Minimal surfaces, Minimal laminations, Colding–Minicozzi theory |
BORIS DOI: |
10.48350/151280 |
URI: |
https://boris.unibe.ch/id/eprint/151280 |