Knapp, Jenny; Meyer, Anika; Courquet, Sandra; Millon, Laurence; Raoul, Francis; Gottstein, Bruno; Frey, Caroline F. (2021). Echinococcus multilocularis genetic diversity in Swiss domestic pigs assessed by EmsB microsatellite analyzes. Veterinary parasitology, 293, p. 109429. Elsevier 10.1016/j.vetpar.2021.109429
Text
1-s2.0-S0304401721000893-main.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (6MB) |
Assessing the genetic diversity of the parasite Echinococcus multilocularis provides key information about the temporal and spatial strain flow in a given area. Previous studies indicated that a historical endemic area conventionally presents a relatively high genetic diversity, whereas peripheral or newly endemic areas exhibit a more restricted variability of the parasite. The Swiss plateau region is part of the European historically endemic area, and the genetic diversity has already been investigated by assessing either human metacestode isolates or adult worms from foxes. To date, there have been no studies covering the whole geographical area affected by the parasite. The aim of the present study was to make use of the domestic pig to investigate the genetic diversity of E. multilocularis in relation to spatial distribution. A total of 55 E. multilocularis-induced hepatic lesions from slaughtered pigs from Switzerland were studied using EmsB microsatellite analyzes, and findings were compared to already published data (originating from human, primate, foxes, and rodent samples). A total of 12 EmsB profiles were described among the domestic pigs, some of them presenting a clear spatial organization in the Swiss plateau, with three of the main profiles geographically separated. One of the 12 EmsB profiles has been newly identified for Switzerland in this study, while the other 11 profiles had been previously described in other Swiss E. multilocularis isolates from other hosts. Overall, a total of 18 EmsB profiles have so far been described within the Swiss endemic area. Six profiles appeared only among human, primate, rodent, and fox samples. Based on a richness and diversity accumulation analysis, the sampling efficiency for the whole studied area has now been improved considerably by compilation of 178 E. multilocularis specimens obtained from four different intermediate and one definitive host species in Switzerland.