Systems Immunology Analyses Following Porcine Respiratory and Reproductive Syndrome Virus Infection and Vaccination.

Borcard, Loïc Vivien; Kick, Andrew Robert; Hug, Corinne; Lischer, Heidi Erika Lisa; Käser, Tobias; Summerfield, Artur (2021). Systems Immunology Analyses Following Porcine Respiratory and Reproductive Syndrome Virus Infection and Vaccination. Frontiers in immunology, 12, p. 779747. Frontiers Research Foundation 10.3389/fimmu.2021.779747

[img]
Preview
Text
fimmu-12-779747.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (7MB) | Preview

This study was initiated to better understand the nature of innate immune responses and the relatively weak and delayed immune response against porcine reproductive and respiratory syndrome virus (PRRSV). Following modified live virus (MLV) vaccination or infection with two PRRSV-2 strains, we analyzed the transcriptome of peripheral blood mononuclear cells collected before and at three and seven days after vaccination or infection. We used blood transcriptional modules (BTMs)-based gene set enrichment analyses. BTMs related to innate immune processes were upregulated by PRRSV-2 strains but downregulated by MLV. In contrast, BTMs related to adaptive immune responses, in particular T cells and cell cycle, were downregulated by PRRSV-2 but upregulated by MLV. In addition, we found differences between the PRRSV strains. Only the more virulent strain induced a strong platelet activation, dendritic cell activation, interferon type I and plasma cell responses. We also calculated the correlations of BTM with the neutralizing antibody and the T-cell responses. Early downregulation (day 0-3) of dendritic cell and B-cell BTM correlated to both CD4 and CD8 T-cell responses. Furthermore, a late (day 3-7) upregulation of interferon type I modules strongly correlated to helper and regulatory T-cell responses, while inflammatory BTM upregulation correlated more to CD8 T-cell responses. BTM related to T cells had positive correlations at three days but negative associations at seven days post-infection. Taken together, this work contributes to resolve the complexity of the innate and adaptive immune responses against PRRSV and indicates a fundamentally different immune response to the less immunogenic MLV compared to field strains which induced robust adaptive immune responses. The identified correlates of T-cell responses will facilitate a rational approach to improve the immunogenicity of MLV.

Item Type:

Journal Article (Original Article)

Division/Institute:

05 Veterinary Medicine > Department of Infectious Diseases and Pathobiology (DIP) > Institute of Virology and Immunology
05 Veterinary Medicine > Department of Infectious Diseases and Pathobiology (DIP)
08 Faculty of Science > Department of Biology > Bioinformatics and Computational Biology

UniBE Contributor:

Borcard, Loïc Vivien, Hug, Corinne Nicole, Tschanz-Lischer, Heidi Erika Lisa, Summerfield, Artur

Subjects:

500 Science
500 Science > 570 Life sciences; biology
500 Science > 590 Animals (Zoology)
600 Technology > 610 Medicine & health
600 Technology > 630 Agriculture

ISSN:

1664-3224

Publisher:

Frontiers Research Foundation

Language:

English

Submitter:

Katharina Gerber-Paizs

Date Deposited:

04 Mar 2022 15:34

Last Modified:

05 Dec 2022 16:08

Publisher DOI:

10.3389/fimmu.2021.779747

PubMed ID:

34975868

Uncontrolled Keywords:

PRRSV (porcine reproductive and respiratory syndrome virus) T-cell responses innate response systems immunology transcriptomics

BORIS DOI:

10.48350/165602

URI:

https://boris.unibe.ch/id/eprint/165602

Actions (login required)

Edit item Edit item
Provide Feedback