Marchionatti, Emma; Kittl, Sonja; Sendi, Parham; Perreten, Vincent (2024). Whole genome-based antimicrobial resistance, virulence, and phylogenetic characteristics of Trueperella pyogenes clinical isolates from humans and animals. Veterinary microbiology, 294, p. 110102. Elsevier 10.1016/j.vetmic.2024.110102
|
Text
1-s2.0-S037811352400124X-main.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (1MB) | Preview |
Trueperella pyogenes is an opportunistic zoonotic bacterial pathogen, whose antimicrobial resistance, virulence, and genetic relatedness between strains from animals and humans are barely studied. These characteristics were therefore analyzed for clinical T. pyogenes strains from 31 animals of 11 different species and 8 humans determining their complete circular genome sequence and antimicrobial susceptibility. The MICs of 19 antimicrobials including 3 antiseptics correlated to the resistance genes identified in silico within the genomes revealing a predominance of resistance to streptomycin (aadA9), sulfamethoxazole (sul1), and tetracycline (tet(33), tet(W/N/W)) among strains from humans and cattle. Additional resistance genes (erm(X), erm(56), cmx, drfA1, aadA1, aph(3'')-Ib (strA), aph(6)-Id (strB), aac(3)-IVa, aph(4)-Ia) were found only sporadically. The resistance genes were localized on genetic elements integrated into the chromosome. A cgMLST-based phylogenetic analysis revealed two major clusters each containing genetically diverse strains. The human strains showed the closest relatedness to strains from cattle. Virulence genes coding for fimbriae (fimA, fimC), neuroamidase (nanP, nanH), pyolysin (plo), and collagen binding protein (cbpA) were identified in strains from different hosts, but no correlation was observed between virulence factors and strain origin. The existence of resistance genes typically found in Gram-negative bacteria within the Gram-positive T. pyogenes indicates a wider capacity to adapt to antimicrobial selective pressure. Moreover, the presence of similar antimicrobial resistance profiles found in cattle and human strains as well as their closest relatedness suggests common zoonotic features and cattle as the potential source for human infections.