[Lys40(Ahx-DTPA-111In)NH2]-Exendin-4 is a highly efficient radiotherapeutic for glucagon-like peptide-1 receptor-targeted therapy for insulinoma

Wicki, Andreas; Wild, Damian; Storch, Daniel; Seemayer, Christian; Gotthardt, Martin; Behe, Martin; Kneifel, Stefan; Mihatsch, Michael J; Reubi, Jean-Claude; Mäcke, Helmut R; Christofori, Gerhard (2007). [Lys40(Ahx-DTPA-111In)NH2]-Exendin-4 is a highly efficient radiotherapeutic for glucagon-like peptide-1 receptor-targeted therapy for insulinoma. Clinical cancer research, 13(12), pp. 3696-705. Philadelphia, Pa.: American Association for Cancer Research 10.1158/1078-0432.CCR-06-2965

Full text not available from this repository.

PURPOSE: Although metabolic changes make diagnosis of insulinoma relatively easy, surgical removal is hampered by difficulties in locating it, and there is no efficient treatment for malignant insulinoma. We have previously shown that the high density of glucagon-like peptide-1 receptors (GLP-1R) in human insulinoma cells provides an attractive target for molecular imaging and internal radiotherapy. In this study, we investigated the therapeutic potential of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4, an (111)In-labeled agonist of GLP-1, in a transgenic mouse model of human insulinoma. EXPERIMENTAL DESIGN: [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 was assessed in the Rip1Tag2 mouse model of pancreatic beta-cell carcinogenesis, which exhibits a GLP-1R expression comparable with human insulinoma. Mice were injected with 1.1, 5.6, or 28 MBq of the radiopeptide and sacrificed 7 days after injection. Tumor uptake and response, the mechanism of action of the radiopeptide, and therapy toxicity were investigated. RESULTS: Tumor uptake was >200% injected activity per gram, with a dose deposition of 3 Gy/MBq at 40 pmol [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4. Other GLP-1R-positive organs showed > or =30 times lower dose deposition. A single injection of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 resulted in a reduction of the tumor volume by up to 94% in a dose-dependent manner without significant acute organ toxicity. The therapeutic effect was due to increased tumor cell apoptosis and necrosis and decreased proliferation. CONCLUSIONS: The results suggest that [Lys(40)(Ahx-DTPA-(111)In)NH(2)]-Exendin-4 is a promising radiopeptide capable of selectively targeting insulinoma. Furthermore, Auger-emitting radiopharmaceuticals such as (111)In are able to produce a marked therapeutic effect if a high tumor uptake is achieved.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute of Pathology

UniBE Contributor:

Reubi-Kattenbusch, Jean-Claude

Subjects:

500 Science > 570 Life sciences; biology
600 Technology > 610 Medicine & health

ISSN:

1078-0432

ISBN:

17575235

Publisher:

American Association for Cancer Research

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:54

Last Modified:

05 Dec 2022 14:16

Publisher DOI:

10.1158/1078-0432.CCR-06-2965

PubMed ID:

17575235

Web of Science ID:

000247336200035

URI:

https://boris.unibe.ch/id/eprint/22744 (FactScience: 36405)

Actions (login required)

Edit item Edit item
Provide Feedback