Detection of convergent genome-wide signals of adaptation to tropical forests in humans

Amorim, Carlos Eduardo G.; Daub, Joséphine; Salzano, Francisco M.; Foll, Matthieu; Excoffier, Laurent (2015). Detection of convergent genome-wide signals of adaptation to tropical forests in humans. PLoS ONE, 10(4), pp. 1-19. Public Library of Science 10.1371/journal.pone.0121557

[img]
Preview
Text
Amorim_Daub.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (1MB) | Preview

Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE) > Population Genetics
08 Faculty of Science > Department of Biology > Institute of Ecology and Evolution (IEE)

UniBE Contributor:

Daub, Joséphine, Foll, Matthieu, Excoffier, Laurent

Subjects:

500 Science > 570 Life sciences; biology

ISSN:

1932-6203

Publisher:

Public Library of Science

Language:

English

Submitter:

Isabelle Duperret

Date Deposited:

22 Jan 2016 16:03

Last Modified:

05 Dec 2022 14:51

Publisher DOI:

10.1371/journal.pone.0121557

PubMed ID:

25849546

BORIS DOI:

10.7892/boris.74784

URI:

https://boris.unibe.ch/id/eprint/74784

Actions (login required)

Edit item Edit item
Provide Feedback