Marti, Nesa Magdalena; Galván, José A.; Pandey, Amit Vikram; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück Pandey, Christa Emma (2017). Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome. Molecular and cellular endocrinology, 441, pp. 116-123. Elsevier Ireland 10.1016/j.mce.2016.07.029
Text
1-s2.0-S0303720716302696-main.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (3MB) |
Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.