Portenier, Céline; Hüsler, Fabia; Härer, Stefan; Wunderle, Stefan (2020). Towards a webcam-based snow cover monitoring network: methodology and evaluation. The Cryosphere, 14(4), pp. 1409-1423. Copernicus Publications 10.5194/tc-14-1409-2020
|
Text
tc-14-1409-2020.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (15MB) | Preview |
Snow cover variability has a significant impact on climate and the environment and is of great socioeconomic importance for the European Alps. Terrestrial photography offers a high potential to monitor snow cover variability, but its application is often limited to small catchment scales. Here, we present a semiautomatic procedure to derive snow cover maps from publicly available webcam images in the Swiss Alps and propose a procedure for the georectification and snow classification of such images. In order to avoid the effort of manually setting ground control points (GCPs) for each webcam, we implement a novel registration approach that automatically resolves camera parameters (camera orientation; principal point; field of view, FOV) by using an estimate of the webcams' positions and a high-resolution digital elevation model (DEM). Furthermore, we propose an automatic image-to-image alignment to correct small changes in camera orientation and compare and analyze two recent snow classification methods. The resulting snow cover maps indicate whether a DEM grid is snow-covered, snow-free, or not visible from webcams' positions. GCPs are used to evaluate our novel automatic image registration approach. The evaluation reveals a root mean square error (RMSE) of 14.1 m for standard lens webcams (FOV<48∘) and a RMSE of 36.3 m for wide-angle lens webcams (FOV≥48∘). In addition, we discuss projection uncertainties caused by the mapping of low-resolution webcam images onto the high-resolution DEM. Overall, our results highlight the potential of our method to build up a webcam-based snow cover monitoring network.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Geography > Physical Geography > Unit Remote Sensing 10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR) 08 Faculty of Science > Institute of Geography 08 Faculty of Science > Institute of Geography > Physical Geography |
UniBE Contributor: |
Portenier, Céline Christine, Wunderle, Stefan |
Subjects: |
500 Science > 550 Earth sciences & geology |
ISSN: |
1994-0424 |
Publisher: |
Copernicus Publications |
Language: |
English |
Submitter: |
Céline Christine Portenier |
Date Deposited: |
13 May 2020 15:15 |
Last Modified: |
11 Aug 2024 07:07 |
Publisher DOI: |
10.5194/tc-14-1409-2020 |
BORIS DOI: |
10.7892/boris.143988 |
URI: |
https://boris.unibe.ch/id/eprint/143988 |