Schütz, Narayan; Botros, Angela A.; Knobel, Samuel E. J.; Saner, Hugo; Buluschek, Philipp; Nef, Tobias (27 August 2020). Real-World Consumer-Grade Sensor Signal Alignment Procedure Applied to High-Noise ECG to BCG Signal Synchronization *. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society (pp. 5858-5962). IEEE 10.1109/EMBC44109.2020.9175449
Text
09175449.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (1MB) |
In recent years, consumer-grade sensors that measure health relevant physiological signals have become widely available and are increasingly used by consumers and researchers alike. While this allows for multiple novel, potentially highly beneficial, large-scale health monitoring applications, quality of these data streams is oftentimes suboptimal. This makes alignment of different high-frequency data streams from multiple, non-connected sensors, a difficult task. In this work we describe a noise-robust framework to align high-frequency signals from different sensors, that share some underlying characteristic, obtained in a free-living, non-clinical, home environment. We demonstrate the approach on the basis of a single-lead, medical-grade, mobile electrocardiography device and a consumer-grade sleep sensor that allows for ballistocardiography. Both commercially available sensors measure the physiological process of a heartbeat. We show, on the basis of real-world data with multiple people and sensors, that the two highly noisy and sometimes dissimilar signals could in most cases be aligned with considerable precision. As a result, we could reduce mean heartbeat peak-to-peak difference by 58.1% on average and increase signal correlation by 0.40 on average.
Item Type: |
Conference or Workshop Item (Paper) |
---|---|
Division/Institute: |
10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research > ARTORG Center - Gerontechnology and Rehabilitation 10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research |
Graduate School: |
Graduate School for Cellular and Biomedical Sciences (GCB) |
UniBE Contributor: |
Schütz, Narayan, Botros, Angela Amira, Knobel, Samuel Elia Johannes, Saner, Hugo Ernst, Nef, Tobias |
Subjects: |
500 Science > 570 Life sciences; biology 600 Technology > 610 Medicine & health 600 Technology > 620 Engineering |
ISBN: |
978-1-7281-1990-8 |
Publisher: |
IEEE |
Language: |
English |
Submitter: |
Angela Amira Botros |
Date Deposited: |
14 Sep 2020 09:49 |
Last Modified: |
05 Dec 2022 15:40 |
Publisher DOI: |
10.1109/EMBC44109.2020.9175449 |
BORIS DOI: |
10.7892/boris.146358 |
URI: |
https://boris.unibe.ch/id/eprint/146358 |