Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fiber infiltrated with carbon tetrachloride covering 930 – 2500 nm

LeVan, Hieu; Hoang, Van; Stepniewski, Grzegorz; Le Canh, Trung; Thi Minh, Ngoc Vo; Kasztelanic, Rafal; Klimczak, Mariusz; Pniewski, Jacek; Dinh, Khoa; Heidt, Alexander M.; Buczynski, Ryszard (2021). Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fiber infiltrated with carbon tetrachloride covering 930 – 2500 nm. Optics Express, 29(24), pp. 39587-39601. Optica Publishing Group 10.1364/OE.443666

[img]
Preview
Text
Tetrachloride_2021.pdf - Published Version
Available under License Publisher holds Copyright.

Download (3MB) | Preview

All-normal dispersion supercontinuum (ANDi SC) generation in a lead-bismuth- gallate glass solid-core photonic crystal fiber (PCF) with cladding air-holes infiltrated with carbon tetrachloride (CCl4) is experimentally investigated and numerically verified. The liquid infiltration results in additional degrees of freedom that are complimentary to conventional dispersion engineering techniques and that allow the design of soft-glass ANDi fibers with an exceptionally flat near-zero dispersion profile. The unique combination of high nonlinearity and low normal dispersion enables the generation of a coherent, low-noise SC covering 0.93–2.5 μm requiring only 12.5 kW of pump peak power delivered by a standard ultrafast erbium-fiber laser with 100 MHz pulse repetition rate (PRR). This is a much lower peak power level than has been previously required for the generation of ANDi SC with bandwidths exceeding one octave in silica- or soft-glass fibers. Our results show that liquid-composite fibers are a promising pathway for scaling the PRR of ANDi SC sources by making the concept accessible to pump lasers with hundreds of megahertz of gigahertz PRR that have limited peak power per pulse but are often required in applications such as high-speed nonlinear imaging, optical communications, or frequency metrology. Furthermore, due to the overlap of the SC with the major gain bands of many rare-earth fiber amplifiers, our source could serve as a coherent seed for low-noise ultrafast lasers operating in the short-wave infrared spectral region.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Applied Physics
08 Faculty of Science > Institute of Applied Physics > Lasers

UniBE Contributor:

Heidt, Alexander

Subjects:

500 Science > 530 Physics
600 Technology > 620 Engineering

ISSN:

1094-4087

Publisher:

Optica Publishing Group

Funders:

[4] Swiss National Science Foundation

Language:

English

Submitter:

Alexander Heidt

Date Deposited:

18 Nov 2021 16:45

Last Modified:

05 Dec 2022 15:54

Publisher DOI:

10.1364/OE.443666

BORIS DOI:

10.48350/160930

URI:

https://boris.unibe.ch/id/eprint/160930

Actions (login required)

Edit item Edit item
Provide Feedback