Bovay, Thomas; Lanari, Pierre; Rubatto, Daniela; Smit, Matthijs; Piccoli, Francesca (2021). Pressure–temperature–time evolution of subducted crust revealed by complex garnet zoning (Theodul Glacier Unit, Switzerland). Journal of metamorphic geology, 40(2), pp. 175-206. Wiley 10.1111/jmg.12623
|
Text
Journal_Metamorphic_Geology_-_2021_-_Bovay_-_Pressure_temperature_time_evolution_of_subducted_crust_revealed_by_complex.pdf - Published Version Available under License Creative Commons: Attribution-Noncommercial (CC-BY-NC). Download (6MB) | Preview |
Collisional orogens commonly include mono-metamorphic and poly-metamorphic units, and their different evolution can be difficult to recognise and reconcile. The Theodul Glacier Unit (TGU) in the Western Alps consists of an association of metasedimentary and metamafic rocks embedded within the Zermatt-Saas tectonic unit. In spite of recent petrological studies, it remains unclear whether these rocks underwent one or multiple metamorphic cycles. In this study, different lithologies from the TGU unit (mafic schist, mafic granofels and chloritoid-schist) were investigated for petrography, quantitative compositional mapping of garnet, thermodynamic modelling and Lu-Hf garnet dating. The data reveal a coherent mono-metamorphic history with a β-shape Pressure-Temperature (P–T) path characteristic of oceanic subduction. Garnet Lu-Hf ages yield a restricted garnet crystallization time window between 50.3 and 48.8 Ma (± 0.5%, 2SD). A prograde metamorphic stage recorded in garnet cores yields conditions of 490 ± 15 °C and 1.75 ± 0.05 GPa. Maximum pressure conditions of 2.65 ± 0.10 GPa and 580 ± 15 °C were reached at 50.3 ± 0.3 Ma. Initial exhumation was rapid and led to isothermal decompression to 1.50 ± 0.10 GPa within 1 Myr. This decompression was associated with lawsonite breakdown in mafic schist and in mafic granofels, causing intense fluid-rock interaction within and between different lithologies. This process is recorded in garnet textures and trace element patterns, and in the major element composition of K-white mica. Initial exhumation was followed by re-heating of ~30°C at a pressure of 1.50 ± 0.10 GPa. Perturbation of the subduction-zone thermal structure may be related to upwelling of hot asthenospheric mantle material and transient storage of the unit at the crust–mantle boundary.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Institute of Geological Sciences |
UniBE Contributor: |
Bovay, Thomas, Lanari, Pierre, Rubatto, Daniela, Piccoli, Francesca |
Subjects: |
500 Science > 550 Earth sciences & geology |
ISSN: |
1525-1314 |
Publisher: |
Wiley |
Funders: |
[4] Swiss National Science Foundation |
Projects: |
Projects 166280 not found. |
Language: |
English |
Submitter: |
Daniela Rubatto |
Date Deposited: |
12 Jan 2022 10:21 |
Last Modified: |
05 Dec 2022 15:56 |
Publisher DOI: |
10.1111/jmg.12623 |
BORIS DOI: |
10.48350/162184 |
URI: |
https://boris.unibe.ch/id/eprint/162184 |