Artificial intelligence achieves easy-to-adapt nonlinear global temperature reconstructions using minimal local data

Wegmann, Martin; Jaume-Santero, Fernando (2023). Artificial intelligence achieves easy-to-adapt nonlinear global temperature reconstructions using minimal local data. Communications earth & environment, 4(1) Springer Nature 10.1038/s43247-023-00872-9

[img]
Preview
Text
s43247-023-00872-9.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (46MB) | Preview

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Geography > Physical Geography > Unit Climatology
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Institute of Geography
08 Faculty of Science > Institute of Geography > Physical Geography

UniBE Contributor:

Wegmann, Martin

Subjects:

900 History > 910 Geography & travel
500 Science > 550 Earth sciences & geology

ISSN:

2662-4435

Publisher:

Springer Nature

Language:

English

Submitter:

Madina Susanna Vogt

Date Deposited:

22 Jun 2023 13:02

Last Modified:

22 Jun 2023 13:02

Publisher DOI:

10.1038/s43247-023-00872-9

BORIS DOI:

10.48350/183630

URI:

https://boris.unibe.ch/id/eprint/183630

Actions (login required)

Edit item Edit item
Provide Feedback