Mager, Lukas Franz; Kölzer, Viktor Hendrik; Stuber Roos, Regula; Thoo Sin Lang, Lester; Keller, Irene; Köck, Ivonne; Langenegger, Maya; Simillion, Cedric; Pfister, Simona P; Faderl, Martin Richard; Genitsch Gratwohl, Vera; Tcymbarevich, Irina; Juillerat, Pascal; Li, Xiaohong; Xia, Yu; Karamitopoulou, Evanthia; Lyck, Ruth; Zlobec, Inti; Hapfelmeier, Siegfried Hektor; Bruggmann, Rémy; ... (2017). The ESRP1-GPR137 axis contributes to intestinal pathogenesis. eLife, 6 eLife Sciences Publications 10.7554/eLife.28366
|
Text
elife-28366-v2.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (3MB) | Preview |
Aberrant alternative pre-mRNA splicing (AS) events have been associated with several disorders. However, it is unclear whether deregulated AS directly contributes to disease. Here, we reveal a critical role of the AS regulator epithelial splicing regulator protein 1 (ESRP1) for intestinal homeostasis and pathogenesis. In mice, reduced ESRP1 function leads to impaired intestinal barrier integrity, increased susceptibility to colitis and altered colorectal cancer (CRC) development. Mechanistically, these defects are produced in part by modified expression of ESRP1-specific Gpr137 isoforms differently activating the Wnt pathway. In humans, ESRP1 is downregulated in inflamed biopsies from inflammatory bowel disease patients. ESRP1 loss is an adverse prognostic factor in CRC. Furthermore, generation of ESRP1-dependent GPR137 isoforms is altered in CRC and expression of a specific GPR137 isoform predicts CRC patient survival. These findings indicate a central role of ESRP1-regulated AS for intestinal barrier integrity. Alterations in ESRP1 function or expression contribute to intestinal pathology.