miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer.

Baumgartner, Ulrich; Berger, Fabienne; Hashemi Gheinani, Ali; Burgener, Sabrina Sofia; Monastyrskaya-Stäuber, Katia; Vassella, Erik (2018). miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Molecular cancer, 17(1), p. 44. BioMed Central 10.1186/s12943-018-0781-5

[img]
Preview
Text
MK_miR-19b enhances proliferation_Mol Cancer_2018.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

BACKGROUND

Epidermal growth factor receptor (EGFR) mutations enable constitutive active downstream signaling of PI3K/AKT, KRAS/ERK and JAK/STAT pathways, and promote tumor progression by inducing uncontrolled proliferation, evasion of apoptosis and migration of non-small cell lung cancer (NSCLC). In addition, such EGFR mutations increase the susceptibility of patients with NSCLC to tyrosine kinase inhibitor (TKI) therapy, but treated patients will invariably relapse with resistant disease. A global understanding of underlying molecular mechanisms of EGFR signaling may improve the management of NSCLC patients.

METHODS

microarray analysis was performed to identify PI3K/AKT-regulated miRNAs. Phosphoproteomic analysis and cell based assays were performed using NSCLC cell lines lentivirally transduced with anti-miR or miR overexpressing constructs.

RESULTS

Here, we show that 17 miRNAs including members of the miR-17~ 92 cluster are dysregulated following PI3K/AKT inhibition of EGFR mutant NSCLC cells. Bioinformatics analysis revealed that dysregulated miRNAs act in a concerted manner to enhance the activity of the EGFR signaling pathway. These findings were closely mirrored by attenuation of miR-17~ 92 family member miR-19b in NSCLC cell lines which resulted in reduced phosphorylation of ERK, AKT and STAT and effector proteins in EGFR mutant NSCLC cells. Consistent with this finding, cell cycle progression, clonogenic growth and migration were reduced and apoptosis was enhanced. Co-treatment of NSCLC cells with the tyrosine kinase inhibitor (TKI) gefitinib and anti-miR-19b construct reduced migration and clonogenic growth in a synergistic manner suggesting that EGFR and miR-19b act together to control oncogenic processes. Serine/threonine phosphatase PP2A subunit PPP2R5E and BCL2L11 encoding BIM were identified as major targets of miR-19b by target validation assays. Consistent with this finding, PP2A activity was strongly enhanced in NSCLC transduced with anti-miR-19b construct, but not in cells co-transduced with anti-miR-19b and shPPP2R5E, suggesting that PPP2R5E is a major constituent of the PP2A complex. Accordingly, enhanced proliferation by miR-19b was due to targeting PPP2R5E. In contrast, apoptosis resistance was mainly due to targeting BCL2L11.

CONCLUSION

Our results provide insight into the importance of targeting PPP2R5E and BCL2L11 by miR-19b in oncogenic processes of NSCLC. Attenuation of miR-19b expression could potentially be exploited in adjuvant therapy of EGFR mutant NSCLC.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute of Pathology
04 Faculty of Medicine > Department of Dermatology, Urology, Rheumatology, Nephrology, Osteoporosis (DURN) > Clinic of Urology
04 Faculty of Medicine > Service Sector > Institute of Pathology > Tumour Pathology

UniBE Contributor:

Baumgartner, Ulrich, Berger, Fabienne Chantal, Hashemi Gheinani, Ali, Monastyrskaya-Stäuber, Katia, Vassella, Erik

Subjects:

600 Technology > 610 Medicine & health
500 Science > 570 Life sciences; biology

ISSN:

1476-4598

Publisher:

BioMed Central

Language:

English

Submitter:

Laetitia Hayoz

Date Deposited:

27 Jul 2018 13:12

Last Modified:

05 Dec 2022 15:16

Publisher DOI:

10.1186/s12943-018-0781-5

PubMed ID:

29455644

Uncontrolled Keywords:

Apoptosis Epidermal growth factor receptor Non-small cell lung cancer Proliferation Serine-threonine phosphatase microRNA

BORIS DOI:

10.7892/boris.118247

URI:

https://boris.unibe.ch/id/eprint/118247

Actions (login required)

Edit item Edit item
Provide Feedback