Furukawa, Toshi A; Debray, Thomas P A; Akechi, Tatsuo; Yamada, Mitsuhiko; Kato, Tadashi; Seo, Michael; Efthimiou, Orestis (2020). Can personalized treatment prediction improve the outcomes, compared with the group average approach, in a randomized trial? Developing and validating a multivariable prediction model in a pragmatic megatrial of acute treatment for major depression. Journal of Affective Disorders, 274, pp. 690-697. Elsevier 10.1016/j.jad.2020.05.141
Text
Furukawa JAffectDisord 2020.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (1MB) |
||
|
Text
Furukawa JAffectDisord 2020_AAM.pdf - Accepted Version Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND). Download (304kB) | Preview |
|
|
Text
Furukawa JAffectDisord 2020_supplmat.pdf - Supplemental Material Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND). Download (1MB) | Preview |
|
|
Text (Corrigendum table 1)
Furukawa JAffectDisord 2020_corr.pdf - Other Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND). Download (460kB) | Preview |
BACKGROUND
Clinical trials have traditionally been analysed at the aggregate level, assuming that the group average would be applicable to all eligible and similar patients. We re-analyzed a mega-trial of antidepressant therapy for major depression to explore whether a multivariable prediction model may lead to different treatment recommendations for individual participants.
METHODS
The trial compared the second-line treatment strategies of continuing sertraline, combining it with mirtazapine or switching to mirtazapine after initial failure to remit on sertraline among 1,544 patients with major depression. The outcome was the Personal Health Questionnaire-9 (PHQ-9) at week 9: the original analyses showed that both combining and switching resulted in greater reduction in PHQ-9 by 1.0 point than continuing. We considered several models of penalized regression or machine learning.
RESULTS
Models using support vector machines (SVMs) provided the best performance. Using SVMs, continuing sertraline was predicted to be the best treatment for 123 patients, combining for 696 patients, and switching for 725 patients. In the last two subgroups, both combining and switching were equally superior to continuing by 1.2 to 1.4 points, resulting in the same treatment recommendations as with the original aggregate data level analyses; in the first subgroup, however, switching was substantively inferior to combining (-3.1, 95%CI: -5.4 to -0.5).
LIMITATIONS
Stronger predictors are needed to make more precise predictions.
CONCLUSIONS
The multivariable prediction models led to improved recommendations for a minority of participants than the group average approach in a megatrial.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > Pre-clinic Human Medicine > Institute of Social and Preventive Medicine (ISPM) |
Graduate School: |
Graduate School for Health Sciences (GHS) |
UniBE Contributor: |
Seo, Michael Juhn Uh, Efthimiou, Orestis |
Subjects: |
600 Technology > 610 Medicine & health 300 Social sciences, sociology & anthropology > 360 Social problems & social services |
ISSN: |
0165-0327 |
Publisher: |
Elsevier |
Funders: |
[4] Swiss National Science Foundation |
Language: |
English |
Submitter: |
Andrea Flükiger-Flückiger |
Date Deposited: |
22 Jul 2020 20:18 |
Last Modified: |
05 Dec 2022 15:39 |
Publisher DOI: |
10.1016/j.jad.2020.05.141 |
PubMed ID: |
32664003 |
Uncontrolled Keywords: |
Antidepressive agents Depressive disorder Precision medicine Prediction model |
BORIS DOI: |
10.7892/boris.145295 |
URI: |
https://boris.unibe.ch/id/eprint/145295 |