Wear of monolithic zirconia against different CAD-CAM and indirect restorative materials.

Ozkir, Serhat Emre; Bicer, Mehmet; Deste, Gonca; Karakus, Elif; Yilmaz, Burak (2022). Wear of monolithic zirconia against different CAD-CAM and indirect restorative materials. The journal of prosthetic dentistry, 128(3), pp. 505-511. Elsevier 10.1016/j.prosdent.2021.03.023

[img] Text
1-s2.0-S0022391321001980-main.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

STATEMENT OF PROBLEM

The wear of monolithic zirconia against enamel has been widely studied, but how zirconia affects different opposing restorative materials is not clear.

PURPOSE

The purpose of this in vitro study was to investigate the depth of wear and volumetric loss of different restorative materials opposed by monolithic zirconia.

MATERIAL AND METHODS

Sixty-six Ø10×3-mm specimens (n=11) were fabricated from monolithic zirconia, zirconia reinforced ceramic, lithium disilicate ceramic, feldspathic ceramic, ORMOCER, and ceramic optimized polymer. A 2-body pin-on-disk wear test was performed by using monolithic zirconia pins. The specimens were scanned with a noncontact profilometer after the tests. The scan parameters were a frame size area of 1.5×1.5 mm, frequency of 400 Hz, and scan sensitivity of 2 μm. After the evaluation of depth and volume loss, the specimens were analyzed with a scanning electron microscope. The Kruskal-Wallis test was used to analyze the differences in wear values across the specimen groups, and pairwise comparison tests were performed with a post hoc test (α=.05).

RESULTS

Maximum depth of wear was 257.55 ±18.88 μm for lithium disilicate ceramic, 295.36 ±14.46 μm for zirconia reinforced ceramic, 421.82 ±214.49 μm for ORMOCER, 333.73 ±79.09 μm for ceramic optimized polymer, 146.27 ±22.86 μm for feldspathic ceramic, and 41.55 ±5.04 μm for monolithic zirconia. The depth of wear was not significantly different among lithium disilicate, zirconia-reinforced ceramic, ORMOCER, and ceramic optimized polymer (P<.05). However, the depth of wear of monolithic zirconia and feldspathic ceramic was less than that of other materials (P<.001). Volume loss of lithium disilicate was 1.68 ±0.25 mm3, 1.08 ±0.35 mm3 for zirconia reinforced ceramic, 4.29 ±2.91 mm3 for ORMOCER, 2.46 ±0.63 mm3 for resin ceramic, 1.07 ±0.09 mm3 for feldspathic ceramic, and 0.19 ±0.02 mm3 for monolithic zirconia. Feldspathic ceramic and monolithic zirconia had significantly less volume loss than the other groups (P<.001), and the difference between them for volume loss was statistically insignificant (P>.05).

CONCLUSIONS

The tested ceramic-based materials had favorable wear resistance compared with the tested composite resin-based ones. However, the ceramics tended to crack formation than the composite resins.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > School of Dental Medicine > Department of Reconstructive Dentistry and Gerodontology
04 Faculty of Medicine > School of Dental Medicine > Department of Preventive, Restorative and Pediatric Dentistry

UniBE Contributor:

Yilmaz, Burak

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1097-6841

Publisher:

Elsevier

Language:

English

Submitter:

Tina Lauper

Date Deposited:

28 Jun 2021 14:57

Last Modified:

05 Dec 2022 15:51

Publisher DOI:

10.1016/j.prosdent.2021.03.023

PubMed ID:

34059295

BORIS DOI:

10.48350/156893

URI:

https://boris.unibe.ch/id/eprint/156893

Actions (login required)

Edit item Edit item
Provide Feedback