Lussi, Carmela; De Martin, Elena; Schweizer, Matthias (2021). Positively Charged Amino Acids in the Pestiviral Erns Control Cell Entry, Endoribonuclease Activity and Innate Immune Evasion. Viruses, 13(8) MDPI 10.3390/v13081581
|
Text
Schweizer_Matthias_Positively_Charged_Amino_Acids_viruses-13-01581.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (3MB) | Preview |
The genus Pestivirus, family Flaviviridae, includes four economically important viruses of livestock, i.e., bovine viral diarrhea virus-1 (BVDV-1) and -2 (BVDV-2), border disease virus (BDV) and classical swine fever virus (CSFV). Erns and Npro, both expressed uniquely by pestiviruses, counteract the host's innate immune defense by interfering with the induction of interferon (IFN) synthesis. The structural envelope protein Erns also exists in a soluble form and, by its endoribonuclease activity, degrades immunostimulatory RNA prior to their activation of pattern recognition receptors. Here, we show that at least three out of four positively-charged residues in the C-terminal glycosaminoglycan (GAG)-binding site of BVDV-Erns are required for efficient cell entry, and that a positively charged region more upstream is not involved in cell entry but rather in RNA-binding. Moreover, the C-terminal domain on its own determines intracellular targeting, as GFP fused to the C-terminal amino acids of Erns was found at the same compartments as wt Erns. In summary, RNase activity and uptake into cells are both required for Erns to act as an IFN antagonist, and the C-terminal amphipathic helix containing the GAG-binding site determines the efficiency of cell entry and its intracellular localization.