Intranasally Administered Exosomes from Umbilical Cord Stem Cells Have Preventive Neuroprotective Effects and Contribute to Functional Recovery after Perinatal Brain Injury.

Thomi, Gierin; Joerger-Messerli, Marianne; Haesler, Valérie; Muri, Lukas; Surbek, Daniel; Schoeberlein, Andreina (2019). Intranasally Administered Exosomes from Umbilical Cord Stem Cells Have Preventive Neuroprotective Effects and Contribute to Functional Recovery after Perinatal Brain Injury. Cells, 8(8) MDPI 10.3390/cells8080855

[img]
Preview
Text
cells-08-00855-v2_31398924.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (5MB) | Preview

Perinatal brain injury (PBI) in preterm birth is associated with substantial injury and dysmaturation of white and gray matter, and can lead to severe neurodevelopmental deficits. Mesenchymal stromal cells (MSC) have been suggested to have neuroprotective effects in perinatal brain injury, in part through the release of extracellular vesicles like exosomes. We aimed to evaluate the neuroprotective effects of intranasally administered MSC-derived exosomes and their potential to improve neurodevelopmental outcome after PBI. Exosomes were isolated from human Wharton's jelly MSC supernatant using ultracentrifugation. Two days old Wistar rat pups were subjected to PBI by a combination of inflammation and hypoxia-ischemia. Exosomes were intranasally administered after the induction of inflammation and prior to ischemia, which was followed by hypoxia. Infrared-labeled exosomes were intranasally administered to track their distribution with a LI-COR scanner. Acute oligodendrocyte- and neuron-specific cell death was analyzed 24 h after injury in animals with or without MSC exosome application using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and immunohistochemical counterstaining. Myelination, mature oligodendroglial and neuronal cell counts were assessed on postnatal day 11 using immunohistochemistry, Western blot or RT-PCR. Morris water maze assay was used to evaluate the effect of MSC exosomes on long-term neurodevelopmental outcome 4 weeks after injury. We found that intranasally administered exosomes reached the frontal part of the brain within 30 min after administration and distributed throughout the whole brain after 3 h. While PBI was not associated with oligodendrocyte-specific cell death, it induced significant neuron-specific cell death which was substantially reduced upon MSC exosome application prior to ischemia. MSC exosomes rescued normal myelination, mature oligodendroglial and neuronal cell counts which were impaired after PBI. Finally, the application of MSC exosomes significantly improved learning ability in animals with PBI. In conclusion, MSC exosomes represent a novel prevention strategy with substantial clinical potential as they can be administered intranasally, prevent gray and white matter alterations and improve long-term neurodevelopmental outcome after PBI.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Service Sector > Institute for Infectious Diseases > Research
04 Faculty of Medicine > Service Sector > Institute for Infectious Diseases
04 Faculty of Medicine > Department of Gynaecology, Paediatrics and Endocrinology (DFKE) > Clinic of Gynaecology
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > Unit Childrens Hospital > Forschungsgruppe Pränatale Medizin

Graduate School:

Graduate School for Cellular and Biomedical Sciences (GCB)

UniBE Contributor:

Thomi, Gierin Florence, Jörger, Marianne, Haesler, Valérie, Muri, Lukas Kilian, Surbek, Daniel, Schoeberlein, Andreina

Subjects:

500 Science > 570 Life sciences; biology
600 Technology > 610 Medicine & health

ISSN:

2073-4409

Publisher:

MDPI

Language:

English

Submitter:

Monika Zehr

Date Deposited:

23 Dec 2019 16:18

Last Modified:

27 Sep 2023 21:41

Publisher DOI:

10.3390/cells8080855

PubMed ID:

31398924

Uncontrolled Keywords:

exosomes gray matter injury hypoxia-ischemia intranasal memory mesenchymal stem cells neuroregeneration perinatal brain injury umbilical cord white matter injury

BORIS DOI:

10.7892/boris.136420

URI:

https://boris.unibe.ch/id/eprint/136420

Actions (login required)

Edit item Edit item
Provide Feedback